Occipital Alpha Activity during Stimulus Processing Gates the Information Flow to Object-Selective Cortex
نویسندگان
چکیده
Given the limited processing capabilities of the sensory system, it is essential that attended information is gated to downstream areas, whereas unattended information is blocked. While it has been proposed that alpha band (8-13 Hz) activity serves to route information to downstream regions by inhibiting neuronal processing in task-irrelevant regions, this hypothesis remains untested. Here we investigate how neuronal oscillations detected by electroencephalography in visual areas during working memory encoding serve to gate information reflected in the simultaneously recorded blood-oxygenation-level-dependent (BOLD) signals recorded by functional magnetic resonance imaging in downstream ventral regions. We used a paradigm in which 16 participants were presented with faces and landscapes in the right and left hemifields; one hemifield was attended and the other unattended. We observed that decreased alpha power contralateral to the attended object predicted the BOLD signal representing the attended object in ventral object-selective regions. Furthermore, increased alpha power ipsilateral to the attended object predicted a decrease in the BOLD signal representing the unattended object. We also found that the BOLD signal in the dorsal attention network inversely correlated with visual alpha power. This is the first demonstration, to our knowledge, that oscillations in the alpha band are implicated in the gating of information from the visual cortex to the ventral stream, as reflected in the representationally specific BOLD signal. This link of sensory alpha to downstream activity provides a neurophysiological substrate for the mechanism of selective attention during stimulus processing, which not only boosts the attended information but also suppresses distraction. Although previous studies have shown a relation between the BOLD signal from the dorsal attention network and the alpha band at rest, we demonstrate such a relation during a visuospatial task, indicating that the dorsal attention network exercises top-down control of visual alpha activity.
منابع مشابه
Modulation of the parieto-occipital alpha rhythm during object detection.
Changes in the human neuromagnetic alpha rhythm were monitored during an object detection task to study the effects of visual shape processing on the parieto-occipital activity. Pictures of coherent meaningful objects, which the observers had to detect, and of disorganized meaningless non-objects were presented briefly between masks. The non-objects were systematically followed by a higher leve...
متن کاملAttentional modulation of alpha oscillations in macaque inferotemporal cortex.
Recent work reported the observation of alpha frequency oscillations (8-12 Hz) in several regions of macaque visual cortex, including V2, V4, and inferotemporal cortex (IT). While alpha-related physiology in V2 and V4 appears consistent with a role in attention-related suppression, in IT, alpha reactivity appears conflicted with such a role. We addressed this issue directly by analyzing laminar...
متن کاملTactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas.
We investigated the effects of spatial-selective attention on oscillatory neuronal dynamics in a tactile delayed-match-to-sample task. Whole-head magnetoencephalography was recorded in healthy subjects while dot patterns were presented to their index fingers using Braille stimulators. The subjects' task was to report the reoccurrence of an initially presented sample pattern in a series of up to...
متن کاملBrief Communications Temporal Characteristics of Audiovisual Information Processing
In complex natural environments, auditory and visual information often have to be processed simultaneously. Previous functional magnetic resonance imaging (fMRI) studies focused on the spatial localization of brain areas involved in audiovisual (AV) information processing, but the temporal characteristics of AV information flow in these regions remained unclear. In this study, we used fMRI and ...
متن کاملFunctional Dissociation of Ongoing Oscillatory Brain States Revealed by a Custom-Developed Brain Computer Interface
The state of a neural assembly in the human brain preceding an incoming stimulus is assumed to modulate the processing of subsequently presented stimuli. The nature of this state can differ with respect to the frequency of ongoing oscillatory activity. Oscillatory activity of specific frequency range such as alpha (8-12 Hz) and gamma (30-45 Hz) band oscillations is hypothesized to play a functi...
متن کامل